(a.b.0) Class
Practice Problem Set 12 – (a,b,1) class
The practice problems in this post are to reinforce the concepts of (a,b,0) class and (a,b,1) class discussed this blog post and this blog post in a companion blog. These two posts have a great deal of technical details, especially the one on (a,b,1) class. The exposition in this blog post should be more accessible.
Notation: for whenever is the counting distribution that is one of the (a,b,0) distributions – Poisson, binomial and negative binomial distribution. The notation is the probability that a zerotruncated distribution taking on the value . Likewise is the probability that a zeromodified distribution taking on the value .
Practice Problem 12A 

Practice Problem 12B 
This problem is a continuation of Problem 12A. The following is the probability generating function (pgf) of the Poisson distribution in Problem 12A.

Practice Problem 12C 
Consider a negative binomial distribution with and .

Practice Problem 12D 
The following is the probability generating function (pgf) of the negative binomial distribution in Problem 12C.

Practice Problem 12E 
This is a continuation of Problem 12C and Problem 12D.

Practice Problem 12F 
This problem is similar to Problem 12E.

Practice Problem 12G 
Suppose that the following three probabilities are from a zerotruncated (a,b,0) distribution.

Practice Problem 12H 
Consider a zeromodified distribution. The following three probabilities are from this zeromodified distribution.

Practice Problem 12I 
For a distribution from the (a,b,0) class, you are given that
Determine . 
Practice Problem 12J 
Generate an extended truncated negative binomial (ETNB) distribution with and . Note that this is to start with a negative binomial distribution with parameters and and then derive its zerotruncated distribution. The parameters and will not give a distribution but over look this point and go through the process of creating a zerotruncated distribution. In particular, determine the following.

Problem  Answer 

12A 

12B 

12C 

12D 

21E 

12F 

12G 

12H 

12I 

12J 

Dan Ma practice problems
Daniel Ma practice problems
Dan Ma actuarial science
Daniel Ma actuarial science
Dan Ma Math
Dan Ma Mathematics
Daniel Ma Math
Daniel Ma Mathematics
Actuarial exam
2019 – Dan Ma
The (a,b,0) and (a,b,1) classes
This post is on two classes of discrete distributions called the (a,b,0) class and (a,b,1) class. This post is a followup on two previous posts – summarizing the two posts and giving more examples. The (a,b,0) class is discussed in details in this post in a companion blog. The (a,b,1) class is discussed in details in this post in a companion blog.
Practice problems for the (a,b,0) class is found here. The next post is a practice problem set on the (a,b,1) class.
The (a,b,0) Class
A counting distribution is a discrete probability distribution that takes on the nonnegative integers (0, 1, 2, …). Counting distributions are useful when we want to model occurrences of a certain random events. The three commonly used counting distributions would be the Poisson distribution, the binomial distribution and the negative binomial distribution. All three counting distributions can be generated recursively. For these three distributions, the ratio of any two consecutive probabilities multiplied by integers can be expressed as a linear quantity.
To make the last point in the preceding paragraph clear, let’s set some notations. For any integer , let be the probability that the counting distribution in question takes on the value . For example, if we are considering the counting random variable , then . Let’s look at the situation where the ratio of any two consecutive values of can be expressed as an expression for some constants and .
(1)……….
Multiplying (1) by gives the following.
(1a)……….
Note that the righthand side of (1a) is a linear expression of . This provides a way to fit observations to (a,b,0) distributions.
Any counting distribution that satisfies the recursive relation (1) is said to be a member of the (a,b,0) class of distributions. Note that the recursion starts at . Does that mean can be any probability value we assign? The value of is fixed because all the must sum to 1.
The three counting distribution mentioned above – Poisson, binomial and negative binomial – are all members of the (a,b,0) class. In fact the (a,b,0) class essentially has three distributions. In other words, any member of (a,b,0) class must be one of the three distributions – Poisson, binomial and negative binomial.
An (a,b,0) distribution has its usual parameters, e.g. Poisson has a parameter , which is its mean. So we need to way to translate the usual parameters to and from the parameters and . This is shown in the table below.
Table 1
Distribution  Usual Parameters  Probability at Zero  Parameter a  Parameter b 

Poisson  0  
Binomial  and  
Negative binomial  and  
Negative binomial  and  
Geometric  0  
Geometric  0 
Table 1 provides the mapping to translate between the usual parameters and the recursive parameters and .
Example 1
Let and . Let the initial probability be . Generate the first 4 probabilities according to the recursion formula (1)
Note that the sum of to is 1. So this has to be a binomial distribution and not Poisson or negative binomial. The binomial parameters are and . According to Table 1, this translate to and . The initial probability is .
Example 2
This example generates several probabilities recursively for the negative binomial distribution with and . According to Table 1, this translates to and . The following shows the probabilities up to .
The above probabilities can also be computed using the probability function given below.
For the (a,b,0) class, it is not just about calculating probabilities recursively. The parameters and also give information about other distributional quantities such as moments and variance. For a more detailed discussion of the (a,b,0) class, refer to this post in a companion blog.
The (a,b,1) Class
If the (a,b,0) class is just another name for the three distributions of Poisson, binomial and negative binomial, what is the point of (a,b,0) class? Why not just work with these three distributions individually? Sure, generating the probabilities recursively is a useful concept. The probability functions of the three distributions already give us a clear and precise way to calculate probabilities. The notion of (a,b,0) class leads to the notion of (a,b,1) class, which gives a great deal more flexibility in the modeling counting distributions. It is possible that the (a,b,0) distributions do not adequately describe a random counting phenomenon being observed. For example, the sample data may indicate that the probability at zero may be larger than is indicated by the distributions in the (a,b,0) class. One alternative is to assign a larger value for and recursively generate the subsequent probabilities for . This recursive relation is the defining characteristics of the (a,b,1) class.
A counting distribution is a member of the (a,b,1) class of distributions if the following recursive relation holds for some constants and .
(2)……….
Note that the recursion begins at . Can the values for and be arbitrary? The initial probability is an assumed value. The probability is the value such that the sum is .
The (a,b,1) class gives more flexibility in modeling. For example, the initial probability is in the negative binomial distribution in Example 2. If this is felt to be too small, then a larger value for can be assigned and then let the remaining probabilities be generated by recursion. We demonstrate how this is done using the same (a,b,0) distribution in Example 2.
Before we continue with Example 2, we comment that there are two subclasses in the (a,b,1) class. The subclasses are distinguished by whether or . The (a,b,1) distributions are called zerotruncated distributions in the first case and are called zeromodified distributions in the second case.
Because there are three related distributions, we need to establish notations to keep track of the different distributions. We use the notations established in this post. The notation refers to the probabilities for an (a,b,0) distribution. From this (a,b,0) distribution, we can derive a zerotruncated distribution whose probabilities are notated by . From this zerotruncated distribution, we can derive a zeromodified distribution whose probabilities are denoted by . For example, for the negative binomial distribution in Example 2, we derive a zerotruncated negative binomial distribution (Example 3) and from it we derive a zeromodified negative binomial distribution (Example 4).
Example 3
In Example 3, we calculated the (a,b,0) probabilities up to . We now calculate the probabilities for the corresponding zerotruncated negative binomial distribution. For a zerotruncated distribution, the value of zero is not recorded. So is simply divided by .
(3)……….
The sum of , , must be 1 since is a probability distribution. The (a,b,0) is . Then , which means . The following shows the zerotruncated probabilities.
The above are the first 6 probabilities of the zerotruncated negative binomial distribution with and or with the usual parameters and . The above can also be calculated recursively by using (2). Just calculate and the rest of the probabilities can be generated using the recursion relation (2).
Example 4
From the zerotruncated negative binomial distribution in Example 3, we generate a zeromodified negative binomial distribution. If the original is considered too small,e.g. not big enough to account for the probability of zero claims, then we can assign a larger value to the zero probability. Let’s say 0.10 is more appropriate. So we set . Then the rest of the must sum to , or 0.9 in this example. The following shows how the zeromodified probabilities are related to the zerotruncated probabilities.
(4)……….
The following gives the probabilities for the zeromodified negative binomial distribution.
…(assumed value)
The same probabilities can also be obtained by using the original (a,b,0) probabilities directly as follows:
(5)……….
ETNB Distribution
Examples 2, 3 and 4 show, starting with with an (a,b,0) distribution, how to derive a zerotruncated distribution and from it a zeromodified distribution. In these examples, we start with a negative binomial distribution and the derived distributions are zerotruncated negative binomial distribution and zeromodified negative binomial distribution. If the starting distribution is a Poisson distribution, then the same process would produce a zerotruncated Poisson distribution and a zeromodified Poisson distribution (with a particular assumed value of ).
There are members of the (a,b,1) class that do not originate from a member of the (a,b,0) class. Three such distributions are discussed in this post on the (a,b,1) class. We give an example discussing one of them.
Example 5
This example demonstrates how to work with the extended truncated negative binomial distribution (ETNB). The usual negative binomial distribution has two parameters and in one version ( and in another version). Both parameters are positive real numbers. To define an ETNB distribution, we relax the parameter to include the possibility of in addition to . Of course if , then we just have the usual negative binomial distribution. So we focus on the new situation of .
Let’s say and . We take these two parameters and generate the “negative binomial” probabilities, from which we generate the zerotruncated probabilities as shown in Example 3. Now the parameters and do not belong to a legitimate negative binomial distribution. In fact the resulting are negative values. So this “negative binomial” distribution is just a device to get things going.
According to Table 1, and translate to and . We generate the “negative binomial” probabilities using the recursive relation (1). Don’t be alarmed that the probabilities are negative.
The initial is greater than 1 and the other so called probabilities are negative. But they are just a device to get the ETNB probabilities. Using the formula stated in (3) gives the following zerotruncated ETNB probabilities.
The above gives the first 5 probabilities of the zerotruncated ETNB distribution with parameters and . It is an (a,b,1) distribution that does not originate from any (legitimate) (a,b,0) distribution.
Practice Problems
The next post is a practice problem set on the (a,b,1) class.
actuarial practice problems
Daniel Ma actuarial
Dan Ma actuarial
Dan Ma actuarial science
Daniel Ma actuarial science
Daniel Ma Math
Daniel Ma Mathematics
Actuarial exam
2019 – Dan Ma
Practice Problem Set 11 – (a,b,0) class
The practice problems in this post focus on counting distributions that belong to the (a,b,0) class, reinforcing the concepts discussed in this blog post in a companion blog.
The (a,b,1) class is a generalization of (a,b,0) class. It is discussed here. A practice problem set on the (a,b,1) class is found here.
Notation: for where is the counting distribution being focused on.
Practice Problem 11A 
Suppose that claim frequency follows a negative binomial distribution with parameters and . The following is the probability function.
Evaluate the negative binomial distribution in two ways.

Practice Problem 11B 
Suppose that follows a distribution in the (a,b,0) class. You are given that Evaluate the probability that is at least 1. 
Practice Problem 11C 
The following information is given about a distribution from the (a,b,0) class. What is the form of the distribution? Evaluate . 
Practice Problem 11D 
For a distribution from the (a,b,0) class, the following information is given. Determine the variance of this distribution. 
Practice Problem 11E 
For a distribution from the (a,b,0) class, you are given that and . Find the value of . 
Practice Problem 11F 
You are given that the distribution for the claim count satisfies the following recursive relation: Determine . 
Practice Problem 11G 
Suppose that the random variable is from the (a,b,0) class. You are given that and . Calculate the probability that is at least 3. 
Practice Problem 11H 
For a distribution from the (a,b,0) class, you are given that
Determine . 
Practice Problem 11I 
For a distribution from the (a,b,0) class, you are given that and . Evaluate its mean. 
Practice Problem 11J 
The random variable follows a distribution from the (a,b,0) class. You are given that and . Evaluate . 
Practice Problem 11K 
The random variable follows a distribution from the (a,b,0) class. Suppose that and . Determine . 
Practice Problem 11L 
Given that a discrete distribution is a member of the (a,b,0) class. Which of the following statement(s) are true?
B. ……….. 2 only C. ……….. 3 only D. ……….. 1 and 2 only E. ……….. 1 and 3 only 
Practice Problem 11M 
Given that a discrete distribution is a member of the (a,b,0) class, determine the variance of the distribution if and . 
Practice Problem 11N 
For a distribution in the (a,b,0) class, and . Furthermore, the mean of the distribution is 1. Determine . 
Problem  Answer 

11A 

11B 

11C 

11D 

11E 

11F 

11G 

11H 

11I 

11J 

11K 

11L 

11M 

11N 

Daniel Ma Math
Daniel Ma Mathematics
Actuarial exam
2018 – Dan Ma