Author: Dan Ma

Calculating the variance of insurance payment

Posted on Updated on

The post supplements a three-part discussion on the mathematical models of insurance payments: part 1, part 2 and part 3. This post focuses on the calculation of the variance of insurance payments.

There are three practice problem sets for the 3-part discussion on the mathematical models of insurance payments – problem set 7, problem set 8 and problem set 9. Problems in these problem sets are on calculation of expected payments. We present several examples in this post on variance of insurance payment. A practice problem set will soon follow.

Coverage with an Ordinary Deductible

To simplify the calculation, the only limit on benefits is the imposition of a deductible. Suppose that the loss amount is the random variable X. The deductible is d. Given that a loss has occurred, the insurance policy pays nothing if the loss is below d and pays X-d if the loss exceeds d. The payment random variable is denoted by Y_L or (X-d)_+ and is explicitly described as follows:

(1)……\displaystyle  Y_L=(X-d)_+=\left\{ \begin{array}{ll}                     \displaystyle  0 &\ X \le d \\           \text{ } & \text{ } \\           \displaystyle  X-d &\ X > d           \end{array} \right.

The subscript L in Y_L is to denote that this variable is the payment per loss. This means that its mean, E[Y_L], is the average payment over all losses. A related payment variable is Y_P which is defined as follows:

(2)……\displaystyle Y_P=X-d \ \lvert X > d

The variable Y_P is a truncated variable (any loss that is less than the deductible is not considered) and is also shifted (the payment is the loss less the deductible). As a result, Y_P is a conditional distribution. It is conditional on the loss exceeding the deductible. The subscript P in Y_P indicates that the payment variable is the payment per payment. This means that its mean, E[Y_P], is the average payment over all payments that are made, i.e. average payment over all losses that are eligible for a claim payment.

The focus of this post is on the calculation of E[Y_L] (the average payment over all losses) and Var[Y_L] (the variance of payment per loss). These two quantities are important in the actuarial pricing of insurance. If the policy were to pay each loss in full, the average amount paid would be E[X], the average of the loss distribution. Imposing a deductible, the average amount paid is E[Y_L], which is less than E[X]. On the other hand, Var[Y_L], the variance of the payment per loss, is smaller than Var[X], the variance of the loss distribution. Thus imposing a deductible not only reduces the amount paid by the insurer, it also reduces the variability of the amount paid.

The calculation of E[Y_L] and Var[Y_L] can be done by using the pdf f(x) of the original loss random variable X.

(3)……\displaystyle E[Y_L]=\int_d^\infty (x-d) \ f(x) \ dx

(4)……\displaystyle E[Y_L^2]=\int_d^\infty (x-d)^2 \ f(x) \ dx

(5)……\displaystyle Var[Y_L]=E[Y_L^2]-E[Y_L]^2

The above calculation assumes that the loss X is a continuous random variable. If the loss is discrete, simply replace integrals by summation. The calculation in (3) and (4) can also be done by integrating the pdf of the payment variable Y_L.

(6)……\displaystyle  f_{Y_L}(y)=\left\{ \begin{array}{ll}                     \displaystyle  0 &\ y=0 \\           \text{ } & \text{ } \\           \displaystyle  f(y+d) &\ y > 0           \end{array} \right.

(7)……\displaystyle E[Y_L]=\int_0^\infty y \ f_{Y_L}(y) \ dy

(8)……\displaystyle E[Y_L^2]=\int_0^\infty y^2 \ f_{Y_L}(y) \ dy

It will be helpful to also consider the pdf of the payment per payment variable Y_P.

(9)……\displaystyle f_{Y_P}(y)=\frac{f(y+d)}{P[X > d]} \ \ \ \ \ \ \ y>0

Three Approaches

We show that there are three different ways to calculate E[Y_L] and Var[Y_L].

  1. Using basic principle.
  2. Considering Y_L as a mixture.
  3. Considering Y_L as a compound distribution.

Using basic principle refers to using (3) and (4) or (7) and (8). The second approach is to treat Y_L as a mixture of a point mass of 0 with weight P(X \le d) and the payment per payment Y_P with weight P(X >d). The third approach is to treat Y_L as a compound distribution where the number of claims N is a Bernoulli distribution with p=P(X >d) and the severity is the payment Y_P. We demonstrate these approaches with a series of examples.

Examples

Example 1
The random loss X has an exponential distribution with mean 50. A coverage with a deductible of 25 is purchased to cover this loss. Calculate the mean and variance of the insurance payment per loss.

We demonstrate the calculation using the three approaches discussed above. The following gives the calculation based on basic principles.

    \displaystyle \begin{aligned} E[Y_L]&=\int_{25}^\infty (x-25) \ \frac{1}{50} \ e^{-x/50} \ dx \\&=\int_{0}^\infty \frac{1}{50} \ u \ e^{-u/50} \ e^{-1/2} \ du \\&=50 \ e^{-1/2} \int_{0}^\infty \frac{1}{50^2} \ u \ e^{-u/50}  \ du \\&=50 \ e^{-1/2}=30.33  \end{aligned}

    \displaystyle \begin{aligned} E[Y_L^2]&=\int_{25}^\infty (x-25)^2 \ \frac{1}{50} \ e^{-x/50} \ dx \\&=\int_{0}^\infty \frac{1}{50} \ u^2 \ e^{-u/50} \ e^{-1/2} \ du \\&=2 \cdot 50^2 \ e^{-1/2} \int_{0}^\infty \frac{1}{2} \ \frac{1}{50^3} \ u^2 \ e^{-u/50}  \ du \\&=2 \cdot 50^2 \ e^{-1/2}  \end{aligned}

    \displaystyle Var[Y_L]=2 \cdot 50^2 \ e^{-1/2}-\biggl( 50 \ e^{-1/2} \biggr)^2=2112.954696

In the above calculation, we perform a change of variable via u=x-25. We now do the second approach. Note that the variable Y_P=X-25 \lvert X >25 also has an exponential distribution with mean 50 (this is due to the memoryless property of the exponential distribution). The point mass of 0 has weight P(X \le 25)=1-e^{-1/2} and the variable Y_P has weight P(X > 25)=e^{-1/2}.

    \displaystyle \begin{aligned} E[Y_L]&=0 \cdot (1-e^{-1/2})+E[Y_P] \cdot e^{-1/2}=50 \ \cdot e^{-1/2}  \end{aligned}

    \displaystyle \begin{aligned} E[Y_L^2]&=0 \cdot (1-e^{-1/2})+E[Y_P^2] \cdot e^{-1/2} \\&=(50^2+50^2) \cdot e^{-1/2} =2 \ 50^2 \ \cdot e^{-1/2}  \end{aligned}

    \displaystyle Var[Y_L]=2 \cdot 50^2 \ e^{-1/2}-\biggl( 50 \ e^{-1/2} \biggr)^2=2112.954696

In the third approach, the frequency variable N is Bernoulli with P(N=0)=1-e^{-1/2} and P(N=1)=e^{-1/2}. The severity variable is Y_P. The following calculates the compound variance.

    \displaystyle \begin{aligned} Var[Y_L]&=E[N] \cdot Var[Y_P]+Var[N] \cdot E[Y_P]^2 \\&=e^{-1/2} \cdot 50^2+e^{-1/2} (1-e^{-1/2}) \cdot 50^2 \\&=2 \cdot 50^2 \ e^{-1/2}-50^2 \ e^{-1} \\&=2112.954696  \end{aligned}

Note that the average payment per loss is E[Y_L]=30.33, a substantial reduction from the mean E[X]=50 if the policy pays each loss in full. The standard deviation of Y_L is \sqrt{2112.954696}=45.97, which is a reduction from 50, the standard deviation of original loss distribution. Clearly, imposing a deductible (or other limits on benefits) has the effect of reducing risk for the insurer.

When the loss distribution is exponential, approach 2 and approach 3 are quite easy to implement. This is because the payment per payment variable Y_P has the same distribution as the original loss distribution. This happens only in this case. If the loss distribution is any other distribution, we must determine the distribution of Y_P before carrying out the second or the third approach.

We now work two more examples that are not exponential distributions.

Example 2
The loss distribution is a uniform distribution on the interval (0,100). The insurance coverage has a deductible of 20. Calculate the mean and variance of the payment per loss.

The following gives the basic calculation.

    \displaystyle \begin{aligned} E[Y_L]&=\int_{20}^{100} (x-20) \ \frac{1}{100} \ dx \\&=\int_0^{80} \frac{1}{100} \ u \ du =32  \end{aligned}

    \displaystyle \begin{aligned} E[Y_L^2]&=\int_{20}^{100} (x-20)^2 \ \frac{1}{100} \ dx \\&=\int_0^{80} \frac{1}{100} \ u^2 \ du =\frac{5120}{3}  \end{aligned}

    \displaystyle Var[Y_L]=\frac{5120}{3}-32^2=\frac{2048}{3}=682.67

The mean and variance of the loss distribution are 50 and \frac{100^2}{12}=833.33 (if the coverage pays for each loss in full). By imposing a deductible of 20, the mean payment per loss is 32 and the variance of payment per loss is 682.67. The effect is a reduction of risk since part of the risk is shifted to the policyholder.

We now perform the calculation using the the other two approaches. Note that the payment per payment Y_P=X-20 \lvert X > 20 has a uniform distribution on the interval (0,80). The following calculates according to the second approach.

    \displaystyle \begin{aligned} E[Y_L]&=0 \cdot (0.2)+E[Y_P] \cdot 0.8=40 \ \cdot 0.8=32  \end{aligned}

    \displaystyle \begin{aligned} E[Y_L^2]&=0 \cdot (0.2)+E[Y_P^2] \cdot 0.8=\biggl(\frac{80^2}{12}+40^2 \biggr) \ \cdot 0.8=\frac{5120}{3}  \end{aligned}

    \displaystyle Var[Y_L]=\frac{5120}{3}-32^2=\frac{2048}{3}=682.67

For the third approach, the frequency N is a Bernoulli variable with p=0.8 and the severity variable is Y_P, which is uniform on (0,80).

    \displaystyle \begin{aligned} Var[Y_L]&=E[N] \cdot Var[Y_P]+Var[N] \cdot E[Y_P]^2 \\&=0.8 \cdot \frac{80^2}{12} +0.8 \cdot 0.2 \cdot 40^2 \\&=\frac{2048}{3} \\&=682.67  \end{aligned}

Example 3
In this example, the loss distribution is a Pareto distribution with parameters \alpha=3 and \theta=1000. The deductible of the coverage is 500. Calculate the mean and variance of the payment per loss.

Note that the payment per payment Y_P=X-500 \lvert X > 500 also has a Pareto distribution with parameters \alpha=3 and \theta=1500. This information is useful for implementing the second and the third approach. First the calculation based on basic principles.

    \displaystyle \begin{aligned} E[Y_L]&=\int_{500}^{\infty} (x-500) \ \frac{3 \cdot 1000^3}{(x+1000)^4} \ dx \\&=\int_{0}^{\infty} u \ \frac{3 \cdot 1000^3}{(u+1500)^4} \ du \\&=\frac{1000^3}{1500^3} \ \int_{0}^{\infty} u \ \frac{3 \cdot 1500^3}{(u+1500)^4} \ du\\&=\frac{8}{27} \ \frac{1500}{2}\\&=\frac{2000}{9}=222.22  \end{aligned}

    \displaystyle \begin{aligned} E[Y_L^2]&=\int_{500}^{\infty} (x-500)^2 \ \frac{3 \cdot 1000^3}{(x+1000)^4} \ dx \\&=\int_{0}^{\infty} u^2 \ \frac{3 \cdot 1000^3}{(u+1500)^4} \ du \\&=\frac{1000^3}{1500^3} \ \int_{0}^{\infty} u^2 \ \frac{3 \cdot 1500^3}{(u+1500)^4} \ du\\&=\frac{8}{27} \ \frac{2 \cdot 1500^2}{2 \cdot 1}\\&=\frac{2000000}{3}  \end{aligned}

    \displaystyle Var[Y_L]=\frac{2000000}{3}-\biggl(\frac{2000}{9} \biggr)^2=\frac{50000000}{81}=617283.95

Now, the mixture approach (the second approach). Note that P(X > 500)=\frac{8}{27}.

    \displaystyle \begin{aligned} E[Y_L]&=0 \cdot \biggl(1-\frac{8}{27} \biggr)+E[Y_P] \cdot \frac{8}{27}=\frac{1500}{2} \ \cdot \frac{8}{27}=\frac{2000}{9}  \end{aligned}

    \displaystyle \begin{aligned} E[Y_L^2]&=0 \cdot \biggl(1-\frac{8}{27} \biggr)+E[Y_P^2] \cdot \frac{8}{27}=\frac{2 \cdot 1500^2}{2 \cdot 1} \ \cdot \frac{8}{27}=\frac{2000000}{3}  \end{aligned}

    \displaystyle Var[Y_L]=\frac{2000000}{3}-\biggl(\frac{2000}{9} \biggr)^2=\frac{50000000}{81}=617283.95

Now the third approach, which is to calculate the compound variance.

    \displaystyle \begin{aligned} Var[Y_L]&=E[N] \cdot Var[Y_P]+Var[N] \cdot E[Y_P]^2 \\&=\frac{8}{27}  \cdot 1687500 +\frac{8}{27} \cdot \biggl(1-\frac{8}{27} \biggr) \cdot 750^2 \\&=\frac{50000000}{81} \\&=617283.95  \end{aligned}

Remarks

For some loss distributions, the calculation of the variance of Y_L, the payment per loss, can be difficult mathematically. The required integrals for the first approach may not have closed form. For the second and third approach to work, we need to have a handle on the payment per payment Y_P. In many cases, the pdf of Y_P is not easy to obtain or its mean and variance are hard to come by (or even do not exist). For these examples, we may have to find the variance numerically. The examples presented are some of the distributions that are tractable mathematically for all three approaches. These three examples are such that the second and third approaches represent shortcuts for find variance of Y_L because Y_P have a known form and requires minimal extra calculation. For other cases, it is possible that the second or third approach is doable but is not shortcut. In that case, any one of the approaches can be used.

actuarial practice problems

Daniel Ma actuarial

Dan Ma actuarial

Dan Ma actuarial science

Daniel Ma actuarial science

Daniel Ma Math

Daniel Ma Mathematics

Actuarial exam

Dan Ma actuary

Daniel Ma actuary

\copyright 2019 – Dan Ma

Advertisements

Practice Problem Set 12 – (a,b,1) class

Posted on

The practice problems in this post are to reinforce the concepts of (a,b,0) class and (a,b,1) class discussed this blog post and this blog post in a companion blog. These two posts have a great deal of technical details, especially the one on (a,b,1) class. The exposition in this blog post should be more accessible.

Notation: p_k=P(N=k) for k=0,1,2,\cdots whenever N is the counting distribution that is one of the (a,b,0) distributions – Poisson, binomial and negative binomial distribution. The notation P_k^T is the probability that a zero-truncated distribution taking on the value k. Likewise P_k^M is the probability that a zero-modified distribution taking on the value k.

Practice Problem 12-A
  • Consider a Poisson distribution with mean \lambda=1.2. Evaluate the probabilities P_k where k=0,1,2,3,4,5.
  • Consider the corresponding zero-truncated Poisson distribution. Evaluate the probabilities P_k^T where k=1,2,3,4,5.
  • Consider the corresponding zero-modified Poisson distribution with P_0^M=0.4. Evaluate the probabilities P_k^M where k=1,2,3,4,5.
Practice Problem 12-B

This problem is a continuation of Problem 12-A. The following is the probability generating function (pgf) of the Poisson distribution in Problem 12-A.

    …………….\displaystyle P(z)=e^{1.2 \ (z-1)}
  • Determine the mean, variance and the pgf of the zero-truncated Poisson distribution in Problem 12-A.
  • Determine the mean, variance and the pgf of the zero-modified Poisson distribution in Problem 12-A.
Practice Problem 12-C

Consider a negative binomial distribution with a=2/3 and b=4/3.

  • Evaluate P_0, P_1, P_2 and P_3.
  • Evaluate the mean and variance of the corresponding zero-truncated negative binomial distribution.
  • Evaluate the mean and variance of the corresponding zero-modified negative binomial distribution with P_0^M=0.1.
Practice Problem 12-D

The following is the probability generating function (pgf) of the negative binomial distribution in Problem 12-C.

    …………….\displaystyle P(z)=[1-2 (z-1)]^{-3}
  • Evaluate P'(z), P''(z) and P^{(3)}(z), the first, second and third derivative of P(z), respectively.
  • Evaluate P'(0), \frac{P''(0)}{2!} and \frac{P^{(3)}(0)}{3!}. Compare these with P_1, P_2 and P_3 found in Problem 12-C.
Practice Problem 12-E

This is a continuation of Problem 12-C and Problem 12-D.

  • Using the pgf P(z) in Problem 12-D, find the pgf of the corresponding zero-truncated negative binomial distribution. Call this pgf g(z).
  • Evaluate g'(z), g''(z) and g^{(3)}(z), the first, second and third derivative of g(z), respectively.
  • Obtain P_1^T, P_2^T and P_3^T by evaluating g'(0), \frac{g''(0)}{2!} and \frac{g^{(3)}(0)}{3!}.
Practice Problem 12-F

This problem is similar to Problem 12-E.

  • Using the pgf g(z) in Problem 12-E, find the pgf of the corresponding zero-modified negative binomial distribution. Call this pgf h(z).
  • Evaluate h'(z), h''(z) and h^{(3)}(z), the first, second and third derivative of h(z), respectively.
  • Obtain P_1^M, P_2^M and P_3^M by evaluating h'(0), \frac{h''(0)}{2!} and \frac{h^{(3)}(0)}{3!}.
Practice Problem 12-G

Suppose that the following three probabilities are from a zero-truncated (a,b,0) distribution.

    P_3^T=0.147692308

    P_4^T=0.132923077

    P_5^T=0.111655385

  • Determine the recursion parameters a and b of the corresponding (a,b,0) distribution.
  • What is the (a,b,0) distribution?
  • Evaluate the mean and variance of this (a,b,0) distribution.
Practice Problem 12-H
Consider a zero-modified distribution. The following three probabilities are from this zero-modified distribution.

    P_2^M=0.08669868

    P_3^M=0.162560025

    P_4^M=0.205740032

  • Determine the recursion parameters a and b of the corresponding (a,b,0) distribution.
  • What is the (a,b,0) distribution?
  • Determine P_1^T, the probability that the corresponding zero-truncated distribution taking on the value of 1.
  • Determine P_1^M, the probability that the zero-modified distribution taking on the value of 1.
  • Determine P_0^M.
Practice Problem 12-I
For a distribution from the (a,b,0) class, you are given that

  • a=0.5 and b=1.5,
  • P_5^T=7/60 for the corresponding zero-truncated distribution,
  • P_7^M=0.05 for the corresponding zero-modified distribution for some value of P_0^M.

Determine P_0^M.

Practice Problem 12-J

Generate an extended truncated negative binomial (ETNB) distribution with r=-0.5 and \theta=2. Note that this is to start with a negative binomial distribution with parameters r=-0.5 and \theta=2 and then derive its zero-truncated distribution. The parameters r=-0.5 and \theta=2 will not give a distribution but over look this point and go through the process of creating a zero-truncated distribution. In particular, determine the following.

  • Determine P_k^T for k=1,2,3,4.
  • Determine the mean and variance of the ETNB distribution.

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

Problem Answer
12-A
  • Poisson
    • P_0=e^{-1.2}
    • P_1=1.2 \ e^{-1.2}
    • P_2=0.72 \ e^{-1.2}
    • P_3=0.288 \ e^{-1.2}
    • P_4=0.0864 \ e^{-1.2}
    • P_5=0.020736 \ e^{-1.2}
  • Zero-Truncated Poisson
    • \displaystyle  P_1^T=\frac{1.2 \ e^{-1.2}}{1-e^{-1.2}}=0.517215313
    • \displaystyle P_2^T=\frac{0.72 \ e^{-1.2}}{1-e^{-1.2}}=0.310329288
    • \displaystyle P_3^T=\frac{0.288 \ e^{-1.2}}{1-e^{-1.2}}=0.124131675
    • \displaystyle P_4^T=\frac{0.0864 \ e^{-1.2}}{1-e^{-1.2}}=0.037239503
    • \displaystyle P_5^T=\frac{0.020736 \ e^{-1.2}}{1-e^{-1.2}}=0.008937481
  • Zero-Modified Poisson
    • P_0^M=0.4
    • \displaystyle P_1^M=0.6 \ \frac{1.2 \ e^{-1.2}}{1-e^{-1.2}}=0.310329188
    • \displaystyle P_2^M=0.6 \ \frac{0.72 \ e^{-1.2}}{1-e^{-1.2}}=0.186197513
    • \displaystyle P_3^M=0.6 \ \frac{0.288 \ e^{-1.2}}{1-e^{-1.2}}=0.074479005
    • \displaystyle P_4^M=0.6 \ \frac{0.0864 \ e^{-1.2}}{1-e^{-1.2}}=0.022343702
    • \displaystyle P_5^M=0.6 \ \frac{0.020736 \ e^{-1.2}}{1-e^{-1.2}}=0.005362488
12-B
  • Zero-Truncated Poisson
    • mean = \displaystyle E[N_T]=\frac{1.2}{1-e^{-1.2}}=1.717215313
    • second moment = \displaystyle =E[N_T^2]=\frac{2.64}{1-e^{-1.2}}=3.777873688
    • variance = \displaystyle Var[N_T]=E[N_T^2]-E[N_T]^2=0.829045258
    • pgf = \displaystyle P^T(z)=\frac{1}{1-e^{-1.2}}  \ [e^{1.2 (z-1)} - e^{-1.2}]
  • Zero-Modified Poisson
    • mean = \displaystyle E[N_M]=\frac{0.72}{1-e^{-1.2}}=1.030329188
    • second moment = \displaystyle =E[N_M^2]=\frac{1.584}{1-e^{-1.2}}=2.266724213
    • variance = \displaystyle Var[N_M]=E[N_M^2]-E[N_M]^2=1.205145978
    • pgf = \displaystyle P^M(z)=0.4+\frac{0.6}{1-e^{-1.2}}  \ [e^{1.2 (z-1)} - e^{-1.2}]
12-C
  • Negative binomial
    • \displaystyle P_0=\frac{1}{27}
    • \displaystyle P_1=\frac{2}{27}
    • \displaystyle P_2=\frac{8}{81}
    • \displaystyle P_3=\frac{80}{729}
  • Zero-truncated negative binomial
    • \displaystyle E[N_T]=\frac{81}{13}=6.23
    • \displaystyle E[N_T^2]=\frac{729}{13}
    • \displaystyle Var[N_T]=\frac{2916}{169}=17.2544
  • Zero-modified negative binomial
    • \displaystyle E[N_M]=\frac{72.9}{13}=5.607692308
    • \displaystyle E[N_M^2]=\frac{656.1}{13}
    • \displaystyle Var[N_M]=\frac{3214.89}{169}=19.02301775
12-D
  • \displaystyle P'(z)=6 \ [1-2 (z-1)]^{-4}
  • \displaystyle P''(z)=48 \ [1-2 (z-1)]^{-5}
  • \displaystyle P^{(3)}(z)=480 \ [1-2 (z-1)]^{-6}
  • \displaystyle P'(0)=\frac{2}{27}
  • \displaystyle \frac{P''(0)}{2!}=\frac{8}{81}
  • \displaystyle \frac{P^{(3)}(0)}{3!}=\frac{80}{729}
21-E
  • \displaystyle g(z)=P^T(z)=\frac{27}{26}\biggl([1-2 (z-1)]^{-3}-\frac{1}{27} \biggr)
  • \displaystyle g'(z)=\frac{27}{26} \ P'(z)
  • \displaystyle g''(z)=\frac{27}{26} \ P''(z)
  • \displaystyle g^{(3)}(z)=\frac{27}{26} \ P^{(3)}(z)
  • \displaystyle g'(0)=\frac{1}{13}=0.076923077
  • \displaystyle \frac{g''(0)}{2!}=\frac{4}{39}=0.102564103
  • \displaystyle \frac{g^{(3)}(0)}{3!}=\frac{40}{351}=0.113960114
12-F
  • \displaystyle h(z)=P^M(z)=0.1+\frac{24.3}{26}\biggl([1-2 (z-1)]^{-3}-\frac{1}{27} \biggr)
  • \displaystyle h'(z)=\frac{24.3}{26} \ P'(z)
  • \displaystyle h''(z)=\frac{24.3}{26} \ P''(z)
  • \displaystyle h^{(3)}(z)=\frac{24.3}{26} \ P^{(3)}(z)
  • \displaystyle h'(0)=\frac{0.9}{13}=0.069230769
  • \displaystyle \frac{h''(0)}{2!}=\frac{3.6}{39}=0.092307692
  • \displaystyle \frac{h^{(3)}(0)}{3!}=\frac{36}{351}=0.102564103
12-G
  • \displaystyle a=\frac{3}{5} and \displaystyle b=\frac{6}{5}
  • Negative binomial distribution with r=3 and \displaystyle \theta=\frac{3}{2}
  • mean = \displaystyle \frac{9}{2}=4.5 and variance = \displaystyle \frac{45}{4}=11.25
12-H
  • \displaystyle a=-0.5625 and \displaystyle b=7.3125
  • Binomial distribution with n=12 and \displaystyle p=0.36
  • \displaystyle P_1^T=\frac{6.75 \ (0.64)^{12}}{1-0.64^{12}}=0.032027218
  • \displaystyle P_1^M=\frac{P_2^M}{a+\frac{b}{2}}=0.028023158
  • P_0^M=0.125
12-I
  • P_0^M=0.2
12-J
  • ETNB Probabilities
    • \displaystyle P_1^T=\frac{1}{1-3^{0.5}} \biggl(\frac{-1}{3} \biggr) \ 3^{0.5}=0.7886751346
    • \displaystyle P_2^T=\frac{1}{1-3^{0.5}} \biggl(\frac{-1}{18} \biggr) \ 3^{0.5}=0.1314458558
    • \displaystyle P_3^T=\frac{1}{1-3^{0.5}} \biggl(\frac{-1}{54} \biggr) \ 3^{0.5}=0.0438152853
    • \displaystyle P_4^T=\frac{1}{1-3^{0.5}} \biggl(\frac{-5}{648} \biggr) \ 3^{0.5}=0.0182563689
  • ETNB Mean and Variance
    • \displaystyle E[N_T]=\frac{-1}{1-3^{0.5}}=1.366025404
    • \displaystyle E[N_T^2]=\frac{-2}{1-3^{0.5}}
    • \displaystyle Var[N_T]=E[N_T^2]-E[N_T]^2=0.8660254038

Dan Ma practice problems

Daniel Ma practice problems

Dan Ma actuarial science

Daniel Ma actuarial science

Dan Ma Math

Dan Ma Mathematics

Daniel Ma Math

Daniel Ma Mathematics

Actuarial exam

\copyright 2019 – Dan Ma

The (a,b,0) and (a,b,1) classes

Posted on Updated on

This post is on two classes of discrete distributions called the (a,b,0) class and (a,b,1) class. This post is a follow-up on two previous posts – summarizing the two posts and giving more examples. The (a,b,0) class is discussed in details in this post in a companion blog. The (a,b,1) class is discussed in details in this post in a companion blog.

Practice problems for the (a,b,0) class is found here. The next post is a practice problem set on the (a,b,1) class.

The (a,b,0) Class

A counting distribution is a discrete probability distribution that takes on the non-negative integers (0, 1, 2, …). Counting distributions are useful when we want to model occurrences of a certain random events. The three commonly used counting distributions would be the Poisson distribution, the binomial distribution and the negative binomial distribution. All three counting distributions can be generated recursively. For these three distributions, the ratio of any two consecutive probabilities can be expressed as a linear quantity.

To make the last point in the preceding paragraph clear, let’s set some notations. For any integer k=0,1,2,\cdots, let P_k be the probability that the counting distribution in question takes on the value k. For example, if we are considering the counting random variable N, then P_k=P[N=k]. Let’s look at the situation where the ratio of any two consecutive values of P_k can be expressed as a linear expression for some constants a and b.

(1)……….\displaystyle \frac{P_k}{P_{k-1}}=a + \frac{b}{k} \ \ \ \ \ \ \ \ \ \ \ \ \ k=1,2,3,\cdots

Any counting distribution that satisfies the recursive relation (1) is said to be a member of the (a,b,0) class of distributions. Note that the recursion starts at k=1. Does that mean P_0 can be any probability value we assign? The value of P_0 is fixed because all the P_k must sum to 1.

The three counting distribution mentioned above – Poisson, binomial and negative binomial – are all members of the (a,b,0) class. In fact the (a,b,0) class essentially has three distributions. In other words, any member of (a,b,0) class must be one of the three distributions – Poisson, binomial and negative binomial.

An (a,b,0) distribution has its usual parameters, e.g. Poisson has a parameter \lambda, which is its mean. So we need to way to translate the usual parameters to and from the parameters a and b. This is shown in the table below.

Table 1

Distribution Usual Parameters Probability at Zero Parameter a Parameter b
Poisson \lambda e^{-\lambda} 0 \lambda
Binomial n and p (1-p)^n \displaystyle -\frac{p}{1-p} \displaystyle (n+1) \ \frac{p}{1-p}
Negative binomial r and p p^r 1-p (r-1) \ (1-p)
Negative binomial r and \theta \displaystyle \biggl(\frac{1}{1+\theta} \biggr)^r \displaystyle \frac{\theta}{1+\theta} \displaystyle (r-1) \ \frac{\theta}{1+\theta}
Geometric p p 1-p 0
Geometric \theta \displaystyle \frac{1}{1+\theta} \displaystyle \frac{\theta}{1+\theta} 0

Table 1 provides the mapping to translate between the usual parameters and the recursive parameters a and b.

Example 1
Let a=-1/3 and b=5/3. Let the initial probability be P_0=81/256. Generate the first 4 probabilities according to the recursion formula (1)

    \displaystyle P_0=\frac{81}{256}

    \displaystyle P_1=\biggl(-\frac{1}{3}+\frac{5}{3} \biggr) \ \frac{81}{256}=\frac{108}{256}

    \displaystyle P_2=\biggl(-\frac{1}{3}+\frac{5}{3} \cdot \frac{1}{2} \biggr) \ \frac{108}{256}=\frac{54}{256}

    \displaystyle P_3=\biggl(-\frac{1}{3}+\frac{5}{3} \cdot \frac{1}{3} \biggr) \ \frac{54}{256}=\frac{12}{256}

    \displaystyle P_4=\biggl(-\frac{1}{3}+\frac{5}{3} \cdot \frac{1}{4} \biggr) \ \frac{12}{256}=\frac{1}{256}

Note that the sum of P_0 to P_4 is 1. So this has to be a binomial distribution and not Poisson or negative binomial. The binomial parameters are n=4 and p=1/4. According to Table 1, this translate to a=-1/3 and b=5/3. The initial probability is P_0=(1-p)^4.

Example 2
This example generates several probabilities recursively for the negative binomial distribution with r=2 and \theta=4. According to Table 1, this translates to a=4/5 and b=4/5. The following shows the probabilities up to P_6.

    \displaystyle P_0=\biggl(\frac{1}{5}\biggr)^2=\frac{1}{25}=0.04

    \displaystyle P_1=\biggl(\frac{4}{5}+\frac{4}{5} \biggr) \ \frac{1}{25}=\frac{8}{125}=0.064

    \displaystyle P_2=\biggl(\frac{4}{5}+\frac{4}{5} \cdot \frac{1}{2} \biggr) \ \frac{8}{125}=\frac{48}{625}=0.0768

    \displaystyle P_3=\biggl(\frac{4}{5}+\frac{4}{5} \cdot \frac{1}{3} \biggr) \ \frac{48}{625}=\frac{256}{3125}=0.08192

    \displaystyle P_4=\biggl(\frac{4}{5}+\frac{4}{5} \cdot \frac{1}{4} \biggr) \ \frac{256}{3125}=\frac{256}{3125}=0.08192

    \displaystyle P_5=\biggl(\frac{4}{5}+\frac{4}{5} \cdot \frac{1}{5} \biggr) \ \frac{256}{3125}=\frac{6144}{78125}=0.0786432

    \displaystyle P_6=\biggl(\frac{4}{5}+\frac{4}{5} \cdot \frac{1}{6} \biggr) \ \frac{6144}{78125}=\frac{28672}{390625}=0.07340032

The above probabilities can also be computed using the probability function given below.

    \displaystyle P_k=(1+k) \ \frac{1}{25} \ \biggl(\frac{4}{5} \biggr)^k \ \ \ \ \ \ \ \ k=0,1,2,3,\cdots

For the (a,b,0) class, it is not just about calculating probabilities recursively. The parameters a and b also give information about other distributional quantities such as moments and variance. For a more detailed discussion of the (a,b,0) class, refer to this post in a companion blog.

The (a,b,1) Class

If the (a,b,0) class is just another name for the three distributions of Poisson, binomial and negative binomial, what is the point of (a,b,0) class? Why not just work with these three distributions individually? Sure, generating the probabilities recursively is a useful concept. The probability functions of the three distributions already give us a clear and precise way to calculate probabilities. The notion of (a,b,0) class leads to the notion of (a,b,1) class, which gives a great deal more flexibility in the modeling counting distributions. It is possible that the (a,b,0) distributions do not adequately describe a random counting phenomenon being observed. For example, the sample data may indicate that the probability at zero may be larger than is indicated by the distributions in the (a,b,0) class. One alternative is to assign a larger value for P_0 and recursively generate the subsequent probabilities P_k for k=2,3,\cdots. This recursive relation is the defining characteristics of the (a,b,1) class.

A counting distribution is a member of the (a,b,1) class of distributions if the following recursive relation holds for some constants a and b.

(2)……….\displaystyle \frac{P_k}{P_{k-1}}=a + \frac{b}{k} \ \ \ \ \ \ \ \ \ \ \ \ \ k=2,3,4, \cdots

Note that the recursion begins at k=2. Can the values for P_0 and P_1 be arbitrary? The initial probability P_0 is an assumed value. The probability P_1 is the value such that the sum P_1+P_2+P_3+\cdots is 1-P_0.

The (a,b,1) class gives more flexibility in modeling. For example, the initial probability is P_0=0.04 in the negative binomial distribution in Example 2. If this P_0 is felt to be too small, then a larger value for P_0 can be assigned and then let the remaining probabilities be generated by recursion. We demonstrate how this is done using the same (a,b,0) distribution in Example 2.

Before we continue with Example 2, we comment that there are two subclasses in the (a,b,1) class. The subclasses are distinguished by whether P_0=0 or P_0>0. The (a,b,1) distributions are called zero-truncated distributions in the first case and are called zero-modified distributions in the second case.

Because there are three related distributions, we need to establish notations to keep track of the different distributions. We use the notations established in this post. The notation P_k refers to the probabilities for an (a,b,0) distribution. From this (a,b,0) distribution, we can derive a zero-truncated distribution whose probabilities are notated by P_k^T. From this zero-truncated distribution, we can derive a zero-modified distribution whose probabilities are denoted by P_k^M. For example, for the negative binomial distribution in Example 2, we derive a zero-truncated negative binomial distribution (Example 3) and from it we derive a zero-modified negative binomial distribution (Example 4).

Example 3
In Example 3, we calculated the (a,b,0) probabilities P_k up to k=6. We now calculate the probabilities P_k^T for the corresponding zero-truncated negative binomial distribution. For a zero-truncated distribution, the value of zero is not recorded. So P_k^T is simply P_k divided by a-P_0.

(3)……….\displaystyle P_k^T=\frac{1}{1-P_0} \ P_k \ \ \ \ \ \ \ \ \ \ k=1,2,3,4,\cdots

The sum of P_k^T, k=1,2,3,\cdots, must be 1 since P_0,P_1,P_3,\cdots is a probability distribution. The (a,b,0) P_0 is 1/25. Then 1-P_0=24/25, which means 1/(1-P_0)=25/24. The following shows the zero-truncated probabilities.

    \displaystyle P_1^T=\frac{8}{125} \cdot \frac{25}{24}=\frac{8}{120}

    \displaystyle P_2^T=\frac{8}{125} \cdot \frac{25}{24}=\frac{48}{600}

    \displaystyle P_3^T=\frac{256}{3125} \cdot \frac{25}{24}=\frac{256}{3000}

    \displaystyle P_4^T=\frac{256}{3125} \cdot \frac{25}{24}=\frac{256}{3000}

    \displaystyle P_5^T=\frac{6144}{78125} \cdot \frac{25}{24}=\frac{6144}{75000}

    \displaystyle P_6^T=\frac{28672}{390625} \cdot \frac{25}{24}=\frac{28672}{375000}

The above are the first 6 probabilities of the zero-truncated negative binomial distribution with a=4/5 and b=4/5 or with the usual parameters r=2 and \theta=4. The above P_k^T can also be calculated recursively by using (2). Just calculate P_1^T$ and the rest of the probabilities can be generated using the recursion relation (2).

Example 4
From the zero-truncated negative binomial distribution in Example 3, we generate a zero-modified negative binomial distribution. If the original P_0=0.04 is considered too small,e.g. not big enough to account for the probability of zero claims, then we can assign a larger value to the zero probability. Let’s say 0.10 is more appropriate. So we set P_0^M=0.10. Then the rest of the P_k^M must sum to 1-P_0^M, or 0.9 in this example. The following shows how the zero-modified probabilities are related to the zero-truncated probabilities.

(4)……….\displaystyle P_k^M=(1-P_0^M) \ P_k^T \ \ \ \ \ \ \ \ \ \ k=1,2,3,4,\cdots

The following gives the probabilities for the zero-modified negative binomial distribution.

    \displaystyle P_0^M=0.1 (assumed value)

    \displaystyle P_1^M=0.9 \cdot \frac{8}{120}=\frac{7.2}{120}

    \displaystyle P_2^M=0.9 \cdot \frac{48}{600}=\frac{43.2}{600}

    \displaystyle P_3^M=0.9 \cdot \frac{256}{3000}=\frac{230.4}{3000}

    \displaystyle P_4^M=0.9 \cdot \frac{256}{3000}=\frac{230.4}{3000}

    \displaystyle P_5^M=0.9 \cdot \frac{6144}{75000}=\frac{5529.6}{75000}

    \displaystyle P_6^M=0.9 \cdot \frac{28672}{375000}=\frac{25804.8}{375000}

The same probabilities can also be obtained by using the original (a,b,0) probabilities P_k directly as follows:

(5)……….\displaystyle P_k^M=\frac{1-P_0^M}{1-P_0} \ P_k \ \ \ \ \ \ \ \ \ \ k=1,2,3,4,\cdots

ETNB Distribution

Examples 2, 3 and 4 show, starting with with an (a,b,0) distribution, how to derive a zero-truncated distribution and from it a zero-modified distribution. In these examples, we start with a negative binomial distribution and the derived distributions are zero-truncated negative binomial distribution and zero-modified negative binomial distribution. If the starting distribution is a Poisson distribution, then the same process would produce a zero-truncated Poisson distribution and a zero-modified Poisson distribution (with a particular assumed value of P_0^M).

There are members of the (a,b,1) class that do not originate from a member of the (a,b,0) class. Three such distributions are discussed in this post on the (a,b,1) class. We give an example discussing one of them.

Example 5
This example demonstrates how to work with the extended truncated negative binomial distribution (ETNB). The usual negative binomial distribution has two parameters r and \theta in one version (r and p in another version). Both parameters are positive real numbers. To define an ETNB distribution, we relax the r parameter to include the possibility of -1<r<0 in addition to r>0. Of course if r>0, then we just have the usual negative binomial distribution. So we focus on the new situation of -1<r<0.

Let’s say r=-0.2 and \theta=1. We take these two parameters and generate the “negative binomial” probabilities, from which we generate the zero-truncated probabilities P_kT as shown in Example 3. Now the parameters r=-0.2 and \theta=1 do not belong to a legitimate negative binomial distribution. In fact the resulting P_k are negative values. So this “negative binomial” distribution is just a device to get things going.

According to Table 1, r=-0.2 and \theta=1 translate to a=1/2 and b=-3/5. We generate the “negative binomial” probabilities using the recursive relation (1). Don’t be alarmed that the probabilities are negative.

    \displaystyle P_0=\biggl(\frac{1}{2}\biggr)^{-0.2}=2^{0.2}=1.148698355

    \displaystyle P_1=\biggl(\frac{1}{2}-\frac{3}{5} \biggr) \ 2^{0.2}=\frac{-1}{10} \ 2^{0.2}

    \displaystyle P_2=\biggl(\frac{1}{2}-\frac{3}{5} \ \frac{1}{2} \biggr) \ \frac{-1}{10} \ 2^{0.2}=\frac{-2}{100} \ 2^{0.2}

    \displaystyle P_3=\biggl(\frac{1}{2}-\frac{3}{5} \ \frac{1}{3} \biggr) \ \frac{-2}{100} \ 2^{0.2}=\frac{-6}{1000} \ 2^{0.2}

    \displaystyle P_4=\biggl(\frac{1}{2}-\frac{3}{5} \ \frac{1}{4} \biggr) \ \frac{-6}{1000} \ 2^{0.2}=\frac{-21}{10000} \ 2^{0.2}

    \displaystyle P_5=\biggl(\frac{1}{2}-\frac{3}{5} \ \frac{1}{5} \biggr) \ \frac{-21}{10000} \ 2^{0.2}=\frac{-399}{500000} \ 2^{0.2}

The initial P_0 is greater than 1 and the other so called probabilities are negative. But they are just a device to get the ETNB probabilities. Using the formula stated in (3) gives the following zero-truncated ETNB probabilities.

    \displaystyle P_1^T=\frac{1}{1-2^{0.2}} \ \biggl( \frac{-1}{10} \ 2^{0.2}\biggr)=0.7725023959

    \displaystyle P_2^T=\frac{1}{1-2^{0.2}} \ \biggl( \frac{-2}{100} \ 2^{0.2}\biggr)=0.1545004792

    \displaystyle P_3^T=\frac{1}{1-2^{0.2}} \ \biggl( \frac{-6}{1000} \ 2^{0.2}\biggr)=0.0463501438

    \displaystyle P_4^T=\frac{1}{1-2^{0.2}} \ \biggl( \frac{-21}{10000} \ 2^{0.2}\biggr)=0.0162225503

    \displaystyle P_5^T=\frac{1}{1-2^{0.2}} \ \biggl( \frac{-399}{500000} \ 2^{0.2}\biggr)=0.0061645691

The above gives the first 5 probabilities of the zero-truncated ETNB distribution with parameters a=1/2 and b=-3/5. It is an (a,b,1) distribution that does not originate from any (legitimate) (a,b,0) distribution.

Practice Problems

The next post is a practice problem set on the (a,b,1) class.

actuarial practice problems

Daniel Ma actuarial

Dan Ma actuarial

Dan Ma actuarial science

Daniel Ma actuarial science

Daniel Ma Math

Daniel Ma Mathematics

Actuarial exam

\copyright 2019 – Dan Ma

Practice Problem Set 11 – (a,b,0) class

Posted on Updated on

The practice problems in this post focus on counting distributions that belong to the (a,b,0) class, reinforcing the concepts discussed in this blog post in a companion blog.

The (a,b,1) class is a generalization of (a,b,0) class. It is discussed here. A practice problem set on the (a,b,1) class is found here.

Notation: p_k=P(X=k) for k=0,1,2,\cdots where X is the counting distribution being focused on.

Practice Problem 11-A
Suppose that claim frequency X follows a negative binomial distribution with parameters r and \theta. The following is the probability function.

    \displaystyle P(X=k)=\binom{r+k-1}{k} \ \biggl(\frac{1}{1+\theta} \biggr)^r \biggl(\frac{\theta}{1+\theta} \biggr)^k \ \ \ \ \ \ k=0,1,2,\cdots

Evaluate the negative binomial distribution in two ways.

  • Evaluate P(X=k) for k=0,1,2,3,4 with r=\frac{11}{6} and \theta=1.
  • Convert r=\frac{11}{6} and \theta=1 into the parameters a and b. Evaluate the (a,b,0) distribution for k=1,2,3,4.
Practice Problem 11-B

Suppose that X follows a distribution in the (a,b,0) class. You are given that

  • p_2=0.185351532
  • p_3=0.105032535
  • p_4=0.055142081

Evaluate the probability that X is at least 1.

Practice Problem 11-C

The following information is given about a distribution from the (a,b,0) class.

  • p_3=0.160670519
  • p_4=0.072301734
  • p_5=0.026028624

What is the form of the distribution? Evaluate p_1.

Practice Problem 11-D

For a distribution from the (a,b,0) class, the following information is given.

  • p_1=0.214663
  • p_2=0.053666
  • p_3=0.012522

Determine the variance of this distribution.

Practice Problem 11-E

For a distribution from the (a,b,0) class, you are given that a=-1/3 and b=2. Find the value of p_0.

Practice Problem 11-F

You are given that the distribution for the claim count X satisfies the following recursive relation:

    \displaystyle p_k=\frac{2 p_{k-1}}{k} \ \ \ \ \ \ \ \ \ k=1,2,3,\cdots

Determine P[X=2].

Practice Problem 11-G
Suppose that the random variable X is from the (a,b,0) class. You are given that a=-1/4 and b=7/4. Calculate the probability that X is at least 3.

Practice Problem 11-H
For a distribution from the (a,b,0) class, you are given that

    p_2=0.20736
    p_3=0.13824
    p_4=0.082944

Determine p_1.

Practice Problem 11-I

For a distribution from the (a,b,0) class, you are given that a=1/6 and b=1/2. Evaluate its mean.

Practice Problem 11-J

The random variable X follows a distribution from the (a,b,0) class. You are given that a=0.6 and b=-0.3. Evaluate E(X^2).

Practice Problem 11-K

The random variable X follows a distribution from the (a,b,0) class. Suppose that E(X)=3 and Var(X)=12. Determine p_2.

Practice Problem 11-L

Given that a discrete distribution is a member of the (a,b,0) class. Which of the following statement(s) are true?

  1. If a>0 and b>0, then the variance of the distribution is greater than the mean.
  2. If a>0 and b=0, then the variance of the distribution is less than the mean.
  3. If a<0 and b>0, then the variance of the distribution is greater than the mean.
    A. ……….. 1 only
    B. ……….. 2 only
    C. ……….. 3 only
    D. ……….. 1 and 2 only
    E. ……….. 1 and 3 only
Practice Problem 11-M

Given that a discrete distribution is a member of the (a,b,0) class, determine the variance of the distribution if a=1/6 and b=1/4.

Practice Problem 11-N

For a distribution in the (a,b,0) class, p_2=0.2048 and p_3=0.0512. Furthermore, the mean of the distribution is 1. Determine p_1.

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

Problem Answer
11-A
  • a=1/2 and b=5/12
  • \displaystyle p_0=\biggl(\frac{1}{2} \biggr)^{11/6}
  • \displaystyle p_1=\biggl(\frac{11}{12} \biggr) \biggl(\frac{1}{2} \biggr)^{11/6}
  • \displaystyle p_2=\biggl(\frac{17}{24} \biggr) \biggl(\frac{11}{12} \biggr) \biggl(\frac{1}{2} \biggr)^{11/6}
  • \displaystyle p_3=\biggl(\frac{23}{36} \biggr) \biggl(\frac{17}{24} \biggr) \biggl(\frac{11}{12} \biggr) \biggl(\frac{1}{2} \biggr)^{11/6}
  • \displaystyle p_4=\biggl(\frac{29}{48} \biggr) \biggl(\frac{23}{36} \biggr) \biggl(\frac{17}{24} \biggr) \biggl(\frac{11}{12} \biggr) \biggl(\frac{1}{2} \biggr)^{11/6}
11-B
  • 1-(0.6)^{2.25}=0.683159775
11-C
  • Poisson distribution with mean 1.8
  • 1.8 e^{-1.8}=0.2975
11-D
  • 0.46875
11-E
  • \displaystyle p_0=\frac{243}{1024}=0.237305
11-F
  • 2 e^{-2}=0.270671
11-G
  • 0.09888
11-H
  • 0.2592
11-I
  • 0.8
11-J
  • 2.4375
11-K
  • \displaystyle p_2=\frac{5.625}{256}=0.02197
11-L
  • A. 1 only
11-M
  • 0.6
11-N
  • 0.4096

Daniel Ma Math

Daniel Ma Mathematics

Actuarial exam

\copyright 2018 – Dan Ma

Practice Problem Set 10 – value at risk and tail value at risk

Posted on Updated on

In actuarial applications, an important focus is on developing loss distributions for insurance products. It is also critical to employ risk measures to evaluate the exposure to risk. This post provides practice problems on two risk measures that are useful from an actuarial perspective. They are: value-at-risk (VaR) and tail-value-at-risk (TVaR).

Practice problems in this post are to reinforce the concepts of VaR and TVaR discussed in this blog post in a companion blog.

Most of the practice problems refer to parametric distributions highlighted in a catalog for continuous parametric models.

Practice Problem 10-A
Losses follow a paralogistic distribution with shape parameter \alpha=2 and scale parameter \theta=1500.

Determine the VaR at the security level 99%.

Practice Problem 10-B
Annual aggregate losses for an insurer follow an exponential distribution with mean 5,000. Evaluate VaR and TVaR for the aggregate losses at the 99% security level.

Practice Problem 10-C

For a certain line of business for an insurer, the annual losses follow a lognormal distribution with parameters \mu=5.5 and \sigma=1.2.

Evaluate the value-at-risk and the tail-value-at-risk at the 95% security level.

Practice Problem 10-D

Annual losses follow a normal distribution with mean 1000 and variance 250,000. Compute the tail-value-risk at the 95% security level.

Practice Problem 10-E

An insurance company models its liability insurance business using a Pareto distribution with shape parameter \alpha=1.5 and scale parameter \theta=5000.

Evaluate the value-at-risk and the tail-value-at-risk at the 99.5% security level.

Practice Problem 10-F

Losses follow an inverse exponential distribution with parameter \theta=2000. Calculate the value-at-risk at the 99% security level.

Practice Problem 10-G
Losses follow a mixture of two exponential distributions with equal weights where one exponential distribution has mean 10 and the other has mean 20. Evaluate the value-at-risk and the tail-value-at-risk at the 95% security level.

Practice Problem 10-H
Losses follow a mixture of two Pareto distributions with equal weights where one Pareto distribution has shape parameter \alpha=1.2 and scale parameter \theta=5000 and the other has shape parameter \alpha=2.4 and scale parameter \theta=5000. Evaluate the value-at-risk and the tail-value-at-risk at the 99% security level.

Practice Problem 10-I

Losses follow a Weibull distribution with parameters \tau=2 and \theta=1000. Determine the value-at-risk at the security level 99.5%.

Practice Problem 10-J

Losses follow an inverse Pareto distribution with parameters \tau=2.5 and \theta=5000. Determine the value-at-risk at the security level 99%.

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

Problem Answer
10-A
  • VaR = 4500
10-B
  • VaR = 23025.85093
10-C
  • VaR = 1761.639168
  • TVaR = 2248.088854
10-D
  • VaR = 1882.5
  • TVaR = 2031.108111
10-E
  • VaR = 165997.5947
  • TVaR = 507992.784
10-F
  • VaR = 198998.3249
10-G
  • VaR = 47.80473823
  • TVaR = 66.96553606
10-H
  • VaR = 127375.8029
  • TVaR = 257568.7795
10-I
  • VaR = 2301.807413
10-J
  • VaR = 1241241.206

Daniel Ma Math

Daniel Ma Mathematics

Actuarial exam

\copyright 2018 – Dan Ma

Practice Problem Set 9 – Expected Insurance Payment – Additional Problems

Posted on

This practice problem set is to reinforce the 3-part discussion on insurance payment models (Part 1, Part 2 and Part 3). The practice problems in this post are additional practice problems in addition to Practice Problem Set 7 and Practice Problem Set 8.

Practice Problem 9A

Losses follow a distribution that is a mixture of two equally weighted Pareto distributions, one with parameters \alpha=2 and \theta=2000 and the other with with parameters \alpha=2 and \theta=4000. An insurance coverage for these losses has an ordinary deductible of 1000.

Calculate the expected payment per loss.

Practice Problem 9B
Losses, prior to any deductible being applied, follow an exponential distribution with mean 17.5. An insurance coverage has a deductible of 8. Inflation of 15% impacts all claims uniformly from the current year to next year.

Determine the percentage change in the expected claim cost per loss from the current year to next year.

Practice Problem 9C
Losses follow a distribution that has the following density function.

    \displaystyle  f(x)=\left\{ \begin{array}{ll}                     \displaystyle  0.15 &\ \ \ \ 0<x < 2 \\           \text{ } & \text{ } \\           \displaystyle  0.10 &\ \ \ \ 2 \le x < 5 \\           \text{ } & \text{ } \\           \displaystyle  0.08 &\ \ \ \ 5 \le x < 10           \end{array} \right.

An insurance policy is purchased to cover these losses. The policy has a deductible of 3.

Calculate the expected insurance payment per payment.

Practice Problem 9D
Losses follow a distribution with the following density function.

    \displaystyle f(x)=\frac{1250}{(x+1250)^2} \ \ \ \ \ \ \ \ \ x>0

An insurance coverage pays losses up to a maximum of 100,000. Determine the average payment per loss.

Practice Problem 9E

You are given the following information.

  • Losses, prior to any application of a deductible, follow a Pareto distribution with \alpha=3 and \theta=5000.
  • An insurance coverage is purchased to cover these losses.
  • If the size of a loss is between 5,000 and 15,000, the coverage pays for the loss in excess of 5,000. Otherwise, the coverage pays nothing.

Determine the average insurance payment per loss.

Practice Problem 9F

You are given the following information.

  • An insurance coverage is purchased to cover a certain type of liability losses.
  • The coverage has a deductible of 1000.
  • Other than the deductible, there are no other coverage modifications.
  • If the deductible is an ordinary deductible, the expected insurance payment per loss is 1,215.
  • If the deductible is a franchise deductible, the expected insurance payment per loss is 1,820.

Determine the proportion of the losses that exceed 1,000.

Practice Problem 9G

Losses follow a uniform distribution on the interval (0, 1000). The insurance coverage has a deductible of 250.

Determine the variance of the insurance payment per loss.

Practice Problem 9H

Losses follow an exponential distribution with mean 500. An insurance coverage that is designed to cover these losses has a deductible of 1,000.

Determine the coefficient of variation of the insurance payment per loss.

Practice Problem 9I
Losses are modeled by an exponential distribution with mean 3,000. An insurance policy covers these losses according to the following provisions.

  • The insured pays 100% of the loss up to 1,000.
  • For the loss amount between 1,000 and 10,000, the insurance pays 80%.
  • The loss amount above 10,000 is paid by the insured until the insured has paid 10,000 in total.
  • For the remaining part of the loss, the insurance pays 90%.

Determine the expected insurance payment per loss.

Practice Problem 9J

You are given the following information.

  • The underlying loss distribution for a block of insurance policies is a Pareto distribution with \alpha=2 and \theta=5000.
  • In the next calendar year, all claims in this block of policies are expected to be impacted uniformly by an inflation rate of 25%.
  • In the next calendar year, the insurance company plans to purchase an excess-of-loss reinsurance policy that caps the insurer’s loss at 10,000 per claim.

Determine the insurance company’s expected claim cost per claim after the effective date of the reinsurance policy.

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

Problem Answer
9A
  • \displaystyle \frac{6800}{3}=2266.67
9B
  • \displaystyle 1.15 e^{1.2/20.125}=1.22
  • About 22% increase
9C
  • \displaystyle \frac{10}{3}=3.33
9D
  • 5493.061443
9E
  • 312.5
9F
  • 0.605
9G
  • 61523.4375
9H
  • \sqrt{2 e^2-1}=3.77887956
9I
  • 1642.795495
9J
  • \displaystyle \frac{50000}{13}=3846.15

Daniel Ma actuarial

Dan Ma actuarial

\copyright 2017 – Dan Ma

Practice Problem Set 8 – Expected Insurance Payment – Additional Problems

Posted on Updated on

This practice problem set is to reinforce the 3-part discussion on insurance payment models (Part 1, Part 2 and Part 3). The practice problems in this post are additional practice problems in addition to Practice Problem Set 7. Another problem set on expected insurance payment: Practice Problem Set 9.

Practice Problem 8A

Losses follow a uniform distribution on the interval (0,50000).

    An insurance policy has an 80% coinsurance and an ordinary deductible of 10,000. The coinsurance is applied after the deductible so that a positive payment is made on the loss amount above 10,000.

Determine the expected payment per loss.

Practice Problem 8B
Losses follow a uniform distribution on the interval (0,50000).

    An insurance policy has an 80% coinsurance and an ordinary deductible of 10,000. The coinsurance is applied after the deductible so that a positive payment is made on the loss amount above 10,000. In addition to the deductible and coinsurance, the coverage has a policy limit of 24,000 (i.e. the maximum covered loss is 40,000).

Determine the expected payment per loss.

Practice Problem 8C
Losses in the current year follow a uniform distribution on the interval (0,50000). Further suppose that inflation of 25% impacts all losses uniformly from the current year to the next year. Losses in the next year are paid according to the following provisions:

  • Coverage has an ordinary deductible of 10,000.
  • Coverage has an 80% coinsurance.
  • The coinsurance is applied after the deductible.
  • The coverage has a policy limit of 24,000.

Determine the expected payment per loss.

Practice Problem 8D
Liability claim sizes follow a Pareto distribution with shape parameter \alpha=1.2 and scale parameter \theta=10000. Suppose that the insurance coverage has a franchise deductible of 20,000 per loss. Given that a loss exceeds the deductible, determine the expected insurance payment.

Practice Problem 8E
Losses in the current year follow a Pareto distribution with parameters \alpha=3 and \theta=5000. Inflation of 10% is expected to impact these losses in the next year. The coverage for next year’s losses has an ordinary deductible of 1,000.

Determine the expected amount per loss in the next year that will be paid by the insurance coverage.

Practice Problem 8F

Losses in the current year follow a Pareto distribution with parameters \alpha=3 and \theta=5000. Inflation of 10% is expected to impact these losses in the next year. The coverage for next year’s losses has a franchise deductible of 1,000.

Determine the expected amount per loss in the next year that will be paid by the insurance coverage.

Practice Problem 8G

Losses follow a distribution that is a mixture of two equally weighted exponential distributions, one with mean 6 and the other with mean 12. An insurance coverage for these losses has an ordinary deductible of 2. Calculate the expected payment per loss.

Practice Problem 8H

Losses follow a distribution that is a mixture of two equally weighted exponential distributions, one with mean 6 and the other with mean 12. An insurance coverage for these losses has a franchise deductible of 2. Calculate the expected payment per loss.

Practice Problem 8I
You are given the following information.

  • Losses follow a distribution with the following cumulative distribution function.
    • \displaystyle F(x)=1-\frac{1}{3} e^{-2x}-\frac{1}{3} e^{-x}-\frac{1}{3} e^{-x/2} \ \ \ \ x>0
  • For each loss, the insurance coverage pays 80% of the portion of the loss that exceeds a deductible of 1.

Determine the average payment per loss.

Practice Problem 8J

You are given the following information.

  • Losses follow a lognormal distribution with \mu=3 and \sigma=1.2.
  • An insurance coverage has a deductible of 10.

Determine the percentage change in the expected claim cost per loss when losses are uniformly impacted by a 20% inflation.

All normal probabilities are obtained by using the normal distribution table found here.

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

Problem Answer
8A
  • 12,800
8B
  • 12,000
8C
  • 14,400
8D
  • 170,000
8E
  • 1968.9349
8F
  • 2574.761038
8G
  • \displaystyle 3 e^{-1/3}+6 e^{-1/6}=7.2285
8H
  • \displaystyle 4 e^{-1/3}+7 e^{-1/6}=8.7915
8I
  • \displaystyle 0.8 \biggl(\frac{1}{6} e^{-2}+\frac{1}{3} e^{-1}+\frac{2}{3} e^{-1/2} \biggr)=0.43963
8J
  • Claim Cost before inflation: 32.52697933.
  • Claim Cost after inflation: 40.51721002.
  • 24.56% change.

Daniel Ma actuarial

Dan Ma actuarial

\copyright 2017 – Dan Ma